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The stabi l i ty  of a ro ta t ing  dust cyl inder  against  pe r tu rba t ions  located in the plane pe rpend ic -  
u lar  to the axis  of ro ta t ion  is investigated.  It is shown that a homogeneous rota t ing cyl inder  
containing a weak inhomogeneity is s table  against  such per turba t ions .  A weakly inhomoge-  
neous cyl inder  with opposi te  s t r e a m s . o f  equal densi ty is unstable for  t h e / =  2 mode  in the 
case  of a pe r tu rba t ion  of the fo rm ~e  l(/cp-wt),  when the densi ty i n c r e a s e s  radia l ly .  The 
instabi l i ty  of  a s y s t em  consis t ing of a homogeneous ro ta t ing  dust cyl inder  in a hot h o m o g e -  
neous medium is de termined.  It is shown that the m a x i m u m  growth ra te  co r r e sponds  to l = 2 
when the densi ty  of  a cold cyl inder  is not negligible in compar i son  with the densi ty  of the 
medium.  In the opposite case ,  the m a x i m u m  growth r a t e  shifts toward l = 3. An a t tempt  is 
made  to a s soc ia te  the exis tence  of the m a x i m u m  growth r a t e  for l = 2 with the p r e sence  of 
two sp i ra l  a r m s  in mos t  galaxies .  It is shown that, when the longitudinal t e m p e r a t u r e  is 
high enough, a ro ta t ing  cyl inder  which is bounded in the rad ia l  direct ion is s table  agains t  
a r b i t r a r y  per turba t ions .  

The gravi ta t ional  instabi l i ty of a homogeneous medium was f i r s t  inves t igated by Jeans  [1]. It was 
subsequent ly  noted [2-3] that Jeans  r ana lys i s  was not wholly c o r r e c t  because  there  was no equi l ibr ium in a 
homogeneous  gravi ta t ing  medium.  A c o r r e c t  ana lys is  of the homogeneous medium,  with account for t ime  
dependence,  was also given in [2, 3]. The r e s u l t s  turned out to be c lose  to those obtained by Jeans ,  namely,  
that a homogeneous medium suppor ts  growing per tu rba t ions  with wavelength in excess  of the c r i t i ca l  value 

~ ~. ~ 8~c / ~ p  

where  p is the density,  c is the speed of sound, and G is the gravi ta t ional  constant.  

The unper turbed solution is t ime-dependen t  and the pe r tu rba t ions  do not grow exponential ly but in 
accordance  with a m o r e  compl ica ted  law which is approx imate ly  of the fo rm exp ( f w  (t) dt). The un p e r -  
tu rbed  s y s t e m  can be taken as the equi l ibr ium (t ime-independent)  sy s t em because  of i ts  finite s ize and the 
p r e s s u r e  gradient  which balances  the gravi ta t ion.  However ,  in the s imples t  case ,  it then turns  out that the 
s ize  of gravi ta t ing  bodies in equi l ibr ium is on the o rde r  of the c r i t i ca l  wavelength,  so that Jeans  instabi l i ty  
does not occur .  

The medium whose equi l ibr ium and s tabi l i ty  is cons idered  may  be a gas  with a given equation of s ta te  
and shor t  mean  f ree  path due to nongravitat ional  in terac t ion  of a toms,  ions, and e lec t rons .  

However ,  if the in terac t ion  between the pa r t i c l e s  in the sys t em is pure ly  gravi ta t ional ,  the two-body 
fo rce  in an equi l ibr ium s y s t e m  is, roughly speaking, weaker  by a fac tor  of N (or,  m o r e  p rec i se ly ,  N/ in  N) 
than the col lec t ive  interact ion.  Consequently,  the p rob lem reduces  in f i r s t  approximat ion  to the d e t e r -  
minat ion of pa r t i c le  motion in the col lect ive  se l f - cons i s t en t  gravi ta t ional  field (this is not val id  if the re  a r e  
d i r ec t  inelast ic  s t e l l a r  encounters ;  hencefor th  we confine our attention to s y s t e m s  in which inelas t ic  
col l is ions  a r e  sufficiently r a r e  to be negligible). Such co l l i s ion less  motion is descr ibed  by the B o l t z m a a n -  
Vlasov kinetic equation [4, 14]. A s i m i l a r  si tuation is cha rac t e r i s t i c ,  as an example ,  for s t a r s  in our own 
Galaxy and ce r ta in  other  s i m i l a r  ga laxies .  
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Correspondingly,  pe r tu rba t ions  of the distr ibution function, i .e. ,  of the density in ve loc i ty  and co -  
ordinate  space,  mus t  be cons idered  in stabil i ty p rob lems .  

Stability depends on the initial dis tr ibution function. If the initial dis tr ibution is Maxwellian,  the 
final r e s u l t s  a r e  not ve ry  different  f rom the hydrodynamic  case  [5-9, 11]. 

The gravi ta t ional  instabi l i ty  obtained in the above pape r s  is connected with the c r i t i ca l  Jeans  wave -  
length and appea r s  only in the absence  of an equi l ibr ium state.  

Since the gravi ta t ional  and Coulomb fo rces  a r e  both dependent on in te rpar t i c le  dis tance,  one would 
expect  the appearance  in the gravi ta t ing  medium of ins tabi l i t ies  analogous to the kinetic p l a s m a  instabi l i t ies ,  
namely ,  the t w o - s t r e a m  instabi l i ty  and the anisot ropic  instabil i ty.  

In fact,  for  a non-Maxwell ian dis tr ibut ion function these  ins tabi l i t ies  do appear  in the equi l ibr ium 
state:  the anisot ropic  instabi l i ty  is obtained for an anisot ropic  Maxwell ian dis t r ibut ion [12] and the two-  
s t r e a m  instabi l i ty [4] occurs  if the re  a re  '~aumps n on the one--dimensional ve loci ty  dis t r ibut ion function f ( v ) ,  
i .e. ,  if t he re  a r e  reg ions  with 0 f / 0 v  > 0, v > 0. 

Equi l ibr ium of  a gravi ta t ing  medium in a homogeneous s ta te  is imposs ible :  the n e c e s s a r y  condition 
for  equi l ibr ium is inhomogeneity or  anisotropy.  

This  may  lead to the suppress ion  of the t w o - s t r e a m  instabi l i ty  in the equi l ibr ium s ta te  in the p r e s -  
ence of two opposite beams  which in p l a s m a  a r e  a lways unstable (see  sect ion 4). The re fo re ,  the c r i t e r i a  
for  t w o - s t r e a m  instabil i ty which have been es tabl ished for p l a s m a  cannot be d i rec t ly  genera l i zed  to a 
gravi ta t ing  medium.  

The instabi l i ty of a number  of exact  solutions for  a rota t ing equi l ibr ium cyl inder  is inves t iga ted  
below, along with the s tabi l i ty  of a ro ta t ing  dust cyl inder  agains t  pe r tu rba t ions  in the plane perpendicu la r  to 
the axis  of rotat ion.  Fo r  a dust medium,  the kinetic analys is  is fully equivalent to the hydrodynamic  ap -  
proach.  In a solution with opposi te ly  ro ta t ing  s t r e a m s  the re  is t w o - s t r e a m  instabi l i ty  in the p r e s e n c e  of 
an inhomogeneity when the densi ty i n c r e a s e s  with dis tance f rom the axis  of rotat ion.  

We also show that the ro ta t ion  of a dust cyl inder  in a hot s ta t ionary  medium exhibits  the t w o - s t r e a m  
instabi l i ty  (the per tu rba t ions  a r e  taken to be of the fo rm Nexp [i (l~0 - wt)] throughout) for  which the m a x i -  
mum growth r a t e  occurs  at l = 2, as in the preceding  case  of an inhomogeneous ro ta t ing  cyl inder  with 
opposite beams .  This  is used as a bas is  for  a d iscuss ion  of the obse rved  p r e sence  of two a r m s  in mos t  
sp i ra l  ga laxies  (see  sect ion 6 on the work of Lin, Marochnik,  and others) .  

It is shown that a rotat ing,  infinitely long cyl inder ,  bounded in the rad ia l  direct ion,  is s table  against  
pe r tu rba t ions  if the longitudinal t e m p e r a t u r e  T[[ is such that  T O < TI]. 

1. Homogeneous  Cylinder.  Consider  a dust cyl inder  ( p r e s s u r e  P = 0) which is in equi l ibr ium when the 
gravi ta t ional  force  is balanced by the centr i fugal  rota t ion force .  The p rob lem is a s s u m e d  to be two-  
dimensional  (although gravi ta t ion  is th ree-d imens iona l )  and we consider  only the dependence on r and ~0 in 
a cyl indr ical  set  of coordinates .  In the s ta t ionary  s ta te  

V , . o = O  ' t d ( r d O o ~  vr da)o 
r dr \ dr / =  4nGP~ and r - -  dr (1.1) 

where  v r and v a r e  the ve loc i t ies  in the radia l  and c r o s s - r a d i a l  d i rec t ion and # is the gravi ta t ional  
potential .  For  a homogeneous cyl inder  

v~o2 = 2~Gp0 r~ (1.2) 

We invest igate  the s tabi l i ty  of the s ta t ionary  s ta te  against  smal l  pe r tu rba t ions .  The pe r tu rbed  solution, 
which is not ve ry  different  f rom the s ta t ionary  solution, is sought in the fo rm 

or = Vr (r) e ~(l*-~!), v, = V. (r) e~(lr (1.3) 

The l inear ized  equations for the motion of dust on a plane a r e  of the fo rm 

- - i  c o - - I  v~~ v r - - 2  v`p~ v ~ - -  
P r d r  
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-~ -37-r / v,. - -  i a) --1%Or v~ = - -  i r! (D 

@ d ~ ~  ( o - - I  p@p0~-r  = 0  ar ] r 
d O  ,, l z 

ir drd r_d_i_) _ ~ (i) = 4~rG9 

(1.4) 

where we have taken into account Eq. (1.3). 

In the homogeneous case,  r-lYe0 = ~2 = const and the f i rs t  three equations reduce to 

(1.5) 

If we compare  this with the last equation in Eq. (1.4), we find that the set given by Eq. (1.4) has a 
solution subject to a condition which can be reduced to the following dispersion relation: 

4~ 2 -- (0) --  l~) 2 = (Oo 2, ~ = 2nGp0 (1.6) 
c 0 = l O  +~o0, 0)o : = 4 n G p 0  

Therefore ,  the s ta t ionary state of a homogeneous rotat ing cylinder is stable against per turbat ions of 
the above kind, and the result ing dispersion relat ion is the analog of the corresponding equation for p lasma 
osci l la t ions (but only in a rotating f rame of reference) .  

2. Inhomogeneous Cylinder. Let  us now determine the eigenfunctions for p lasma- type  oscillations,  
as specified by Eq. (1.6), in the more  general  case of an inhomogeneous cylinder. 

Equation (1.4), which descr ibes  small  oscil lations of a rotating inhomogeneous cylinder,  can be 
reduced to the following second-order  differential equation: 

2 l ~  ! , ~ ~' (2.1) 

where 

y2 = x 2 __ 2zr a = 2~ @ r~', x = l~ -- (o, 
dp0 

ko --  po dr ' A I =  ko'~- 2 ~(a@~,~ct'~_2a.Q / ~ ' - l x )  ~' (2.2) 

Equation (2.1) is most  s imply solved in the WKB approximation in the case of weak inhomogeneity. 
Expanding the density P0 around the constant density Pc, we obtain 

re  

= ~c + 2nGPc--r~ "qc ( r -  re)' g~c~ = I 4~Vprdrrc~ (2.3) 
0 

r c 

l ,a 9.c ~ = 2nGp 
o 

Substituting this into Eq. (2.1) with [kr] >>1 (WKB approximation), we obtain a stable solution. When 
l =0, the cylinder is stable for an a rb i t r a ry  inhomogeneity because the angular momentum of each par t ic le  

is conserved  [15]. 

When Eq. (2.1) is analyzed, we must  f i r s t  ver i fy  that the solution is, in fact, an eigenfunction of the 
equation. Equation (2.1) has poles at the points 

r = O, (eel(r) @ y2(r) = 0 ,  x(r)  = O, y2(r) = 0 

Singularities in the equation may ensure  that its solutions include singular solutions (see, for example, [16]). 
However,  all the physical  quantities must  be finite, and hence the proof that the solution of the equation is 
an eigenfunction reduces  to the demonstrat ion that the solution is finite at any point r~ 
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Cons ide r  the c a s e  of  sma l l  d e p a r t u r e s  f r o m  inhomogene i ty  

lp (R) - p (o)1 / p (~) - ~  i 

In this  ca se ,  Eq. (2.1) b e c o m e s  

dQ (2.4) 

where  o~ and fi a r e  cons tan t s  r e l a t e d  to k and w. 

The  solut ion of  Eq. (2.4) can be e x p r e s s e d  in t e r m s  of the Whi t taker  funct ion [17] as  fol lows:  

(I3 = r-'he-V~Wx, z (air), ~ = C~I + 2B (2.5) 
2a~ 

T h e  solut ion of  Eq. (2.4) g iven  by Eq. (2.5), which is bounded for  r ~ 0  and r ~ %  ex i s t s  for  
- k - i / 2  = n, w h e r e  n + 1 is a na tura l  number  [17], and th is  d e t e r m i n e s  the  r e a l  va lues  of w. This  solut ion 

d e c r e a s e s  exponent ia l ly  for  r ~  ~ and ~ r  l as  r ~ 0 ,  l - 1 .  The solut ion of  Eq. (2.1) is t h e r e f o r e  finite.  

3. Rota t ing  Cyl inder  with Opposi te  B e a m s .  Le t  us now cons ide r  a homogeneous  dust  cy l inde r  c o n -  
s i s t ing  of two mutua l ly  pene t ra t ing  b e a m s  with ve loc i t i e s  vg00 a n d -  vgo 0 and equal dens i ty  ~/2P0, so that  we 
can  inves t iga te  the analog of the t w o - s t r e a m  p l a s m a  instabi l i ty .  The  angular  m o m e n t u m  of the cy l inde r  is 
z e r o  (in c o n t r a s t  to the above hom oge ne ous  ro ta t ion) ,  and Eqs.  (1.1) and (1.2) a r e  va l id  in the s t a t i ona ry  
s ta te .  The  d i spe r s ion  r e l a t i on  for  this  c a s e  can  be obta ined by wr i t ing  Eq. (1.5) fo r  each  of  the  b e a m s  with 
dens i ty  l/2p0 , and then c o m p a r i n g  it with the las t  equat ion in Eq.(1.4) for  the p e r t u r b e d  potent ia l .  The  
r e s u l t  is 

i i 1 
~f~-- (co -- l~) ~ ~ 4~  - -  (co + l~)~ = -fir (3,1) 

F o r  a~ we then have  

o) 2 ---- ~h% 2 (l s ~- 3 ~ 2 V ~  ~- ~/4) ( 3 . 2 )  

The quant i ty  ~ has  a m i n i m u m  at l = 2 for  which w 2 = 0, i .e . ,  we have  uncondi t ional  equ i l ib r ium.  M o r e -  
over ,  J > 0 when l ~2.  If the dens i ty  of  the two i n t e rpene t r a t i ng  b e a m s  is d i f ferent ,  the r e s u l t i n g  d i s p e r s i o n  
r e l a t i o n  is m o r e  compl ica ted ,  but it can  be shown that  all i ts r o o t s  a r e  rea l .  It fol lows that  the c a s e  which 
we a r e  cons ide r ing  is d i f ferent  f r o m  the p l a s m a  ca se ,  in which the opposi te  b e a m s  a r e  a lways  unstable .  

When the  inhomogeneous  cy l inder  c o n s i s t s  of  two ident ica l  but opposi te  ro ta t ing  beams ,  then ins tead  
of  Eq. (2.1) we have  

2-7A~ = K . + K _ ,  K . : - -  A ~ P + A I ~ ' + ~  (3.3) 

w h e r e  K is obta ined f r o m  K+ by r e p l a c i n g  ~ with - ~  th roughout  Eq. (2.2). When l / k r  <<1, we have f r o m  
Eq. (3.3) 

i l 2 (3.4) 
2a~ -- (o~ -- l~) 2 -]- 2 ~  -- (o3 -I- 1~)~ = r ---~ 

It is  r e a d i l y  v e r i f i e d  that  Eq. (3.4) b e c o m e s  ident ical  with Eq. (3.1) when P0' = ~2, = 0. Using Eq. (2.2) 
and Eq. (3.4), we obtain  the d i s p e r s i o n  r e l a t i on  in the f o r m  

~0' --  2o) 2 [(4 t /2)~2 _1/2o)o~ t-  2r~2~'1 + [(4 - -  /2)~22 + 2~2~'r12 --  o)02[(4 --  l~)~ ~ -[] 2~2 ' r1  = 0 (3.5) 

Equat ion (3.5) is b iquadra t i c  in w and its de t e rminan t  is pos i t ive  so that  the ins tabi l i ty  d e s c r i b e d  by 
this equation can only be aper iod ic ,  i .e . ,  the g rowth  r a t e  is~/= iw. Our ana lys i s  of  the ins tab i l i ty  of  a 
h o m o g e n e o u s  cy l inder  with oppos i te  beams  shows that  the m a x i m u m  growth  r a t e  in the c a s e  of  the i n h o m o -  
geneous  cy l inder  m u s t  be sought  fo r  l = 2. In fact ,  when the dens i ty  g rad ien t  is sma l l ,  the  ins tab i l i ty  can 
o c c u r  only for  l = 2: 
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0)2 _ --  rQQ' r176176 
~fy- - -  I/2COo~ 

8Q 2 >1/20)02 for small potand Q' 

(3.6) 

It is c lear  f rom these express ions  that the necessa ry  condition for the onset of the two-s t r eam 
instability in the above cases  is that the angular veloci ty increase  with distance from the center  of the 
cylindero The equilibrium states of the gravitat ing dust cylinder in which the par t ic les  move on noncir -  
cular  orbits  is descr ibed in [18]~ 

4. Instabili t ies of a Rotating Dust Cylinder in a Hot Medium~ Let us investigate the spectrum of 
osci l lat ions produced when a homogeneous gravitat ing dust cylinder is placed in a hot medium. It was 
shown above that the charac te r i s t i c  frequencies of the rotating homogeneous cylinder are  real .  In the 
hot medium these oscil lat ions may grow as a resul t  of a resonant  interaction of the wave with the medium 
par t ic les .  The l inear ized kinetic equation for the hot gas is 

o/ o/  O/o = 0 (4.1) 

where the t e rm V~ 0 3 f / ~ v  is neglected because V~ 0 3 f / O v  << v~f/3r ,  which can be writ ten in the form 

~e 2T 
kr  k~--f~T2 ~ t ,  VT 2 = 

Substituting the per turbed distribution function in the form 

f = Fd(kr-,~O 

we obtain the per turbed density of the hot medium in the form 

(4.2) 

(4.3) 
p* = __ i m V O  I 

O/o/ Ovd2v 
o--  k v  

where  m is the mass  of a par t ic le  of the hot medium, which is assumed to consist  of identical part icles .  

Using Eqs. (1.4), (1.5), and (4.3), we find that the l inear ized Poisson equation is of the form 

d~O A dO l 2 
dr ~ @ r dr r~ B *  = 0 (4.4) 

A = I 4nGimr fir, B = t - -  4nGrm 
t - -  oo~a "(1 : ~ )  l J ~  

J~ = S (OldO~,)d2v J~ =: S (Olol O%)d'v 

]o = ~ exp VT "-~ ] '  4 a  2 - -  (CO - -  la )  ~ 

(4.5) 

Using the res idue  theorem [19, 20], we obtain the following express ions  for the integrals in Eq. (4.5): 

[ t ~ ( t + i V ~ o ) ,  l / k r ~ l  @ =  2no~ (4.6) 
Jr [i~ 1/" ~ Okr / l, l / k r  ~ 1 = kVT ~ / 

t i ~ / r ~ O k r ] l ,  l ] k r < t  ( 0=  (o) (4~ 
J~'= (~ ( t+ iV-~k rO/ l )  k r / l ,  1 / k r ~ l  ~ %  

Consider the case  l / k r  << 1 

A = I  

B = I - - - -  

aikr (i + i Y~ o,~ ~oo*' 

2i V'•  k 2r2 (O(Oo *~ 
t - -  CO0~A kal2VT3 (0~0"2 ~ 47[6[}0*)" 

(4.8) 

(4~ ~ 
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In that  case ,  7 << r 1. 
inequality 

The frequency can be wri t ten  in the fo rm 

co = ~0x § i7 (4.10) 

F r o m  Eqs.  (4.4) and (4.9), neglecting the unity in the express ion  for  A, i.e.,  using the 

we then have the following express ion :  

kr ~ kvT / ~ (4.11) 

(4.12) 

The inequali t ies  given by Eqs.  (4.11) and (4.12) a r e  consis tent  for  k r  >> 1, provided that  

~ / kvT ~ l ~ (4.13) 

This  inequali ty gives the lower l imi t  for the t e m p e r a t u r e  of the hot medium for  fixed k and 12. 

Equation (4.12) is consis tent  with the inequality given by Eq. (4.13), and in der iving it we have used 
the following express ion  for  ~, which is a consequence of the condition of equil ibrium: 

~2 : ~_ ((Oo 2 ~_ COo*S) (4.14) 

Since 7<< w l, the numera to r  in the coeff icients  A and B of Eqs. (4.8) and (4.9) is approx imate ly  equal 
to 

(o0 ~ 2i7 (c0~ --z~) ~_ i coo~ (4.15) 
4 ~  2 - -  ((I} - -  l ~ )  2 - -  (.002 4~Q2 - -  ( ( t )  1 - -  l ~ )  2 

Substituting this into Eqs. (4.4)-(4.9), we obtain 

YI'~ = -- 2 l/-~ (~176176176 [l ::I= Z ~  / (~176 ~)~ ) V ~ ] ~  ]/~ \coo ~ + 2co0"~ (4.16) 

When l = 0 .1 , th is  express ion  gives the damping r a t e  71,2 < 0. When l >-2, for  the case  in which in the 
pa ren theses  in Eq. (4.16) we take the negative sign, we obtain T2 > 0; and these  a r e  growing osci l la t ions  due 
to the resonan t  in teract ion of waves  with the pa r t i c l e s  of the hot medium ( t w o - s t r e a m  instabil i ty).  

It is c l ea r  f rom Eq. (4.16) that the quantity T ~//(kr)  3 is l a rge ly  de te rmined  by the p a r a m e t e r  kr  and 
r e a c h e s  a m a x i m u m  for kr  ~ 1 .  Since in this ca se  l / k r  is a smal l  p a r a m e t e r  of the p rob lem,  the m a x i m u m  
of the growth r a t e  is r eached  for min imum [ ,  i .e. ,  for  l = 2. For  COo* >> w 0 the max imum growth r a t e  shifts  
toward  l = 3. 

Suppose now that l / k r  >>1 so that, using Eqs. (4.6) and (4.7) and proceeding by analogy with the 
foregoing,  we obtain 

lf--/k.r\8 o3o*%)o~ I:~ ~ l~_[o)o~-~o)o*~ )I/~ l (4.17) 

The physical  meaning of the instabi l i ty  obtained in this sect ion is i l lus t ra ted  in Fig. 1. The veloci ty  
dis tr ibut ion function f o r  the dust pa r t i c l e s  in the cyl inder  takes  the fo rm of a "hump" on the distr ibution 
function for the pa r t i c l e s  of the hot medium.  This  explains the p r e sence  of the t w o - s t r e a m  instabi l i ty  due 
to the resonan t  Landau m e c h a n i s m  (for fu r ther  detai ls  see, for  example ,  [20]). 

g Qr ~ 

Fig. 1 

5. Stability of A Rotating Cylinder  Bounded in the Radial  Direct ion.  Con- 
s ider  a homogeneous ro ta t ing  cyl inder  of infinite length, but bounded in the rad ia l  
direct ion,  in which the centr i fugal  force  balances  the gravi ta t ional  force  in a 
plane. 

A cyl inder  of this kind is in equi l ibr ium, but in the dust this equi l ibr ium is 
unstable against  pe r tu rba t ions  with k z ~ 0, and for  smal l  va lues  of k z the square  
of the f requency is w~ N -(kzR)Zw02 ' where  R is the rad ius  of the cyl inder  and 
w02 = 4~ GP0. For  la rge  k z we have, as in the case  of the homogeneous  medium,  
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w 2 = -w02. If  t h e r e  is a nonze ro  longitudinal  t e m p e r a t u r e  T[[ we have  s tabi l iza t ion,  and d imens iona l  c o n -  
s i de ra t i ons  show that  fo r  any k z the change  in the squa re  o f  the f r equency  due to the appea rance  of  T [[ is 
Aw 2 ~kz2VT 2. 

P e r t u r b a t i o n s  with suf f ic ient ly  l a r g e  k z will  be s t ab i l i zed  for  any T [[, but s ince  Wd2 and Aw 2 have  the 
s a m e  dependence  on k z for  sma l l  k z and fo r  T[[ > To, the p e r t u r b a t i o n s  With smal l  k z will  a lso  be s tabi l ized.  

T h e r e f o r e ,  the cy l inde r  is comple t e ly  s tab le  for  T H such that  v T > VT0 ~ Rw 0. 

Le t  us p r o v e  this  r i g o r o u s l y  and d e t e r m i n e  the p r e c i s e  va lue  of T 0, It is  shown in [12] that,  when 
T[I > T•  the an i so t rop ic  ins tab i l i ty  is absent ,  T• = 0 and, t he r e fo re ,  the cy l inder  is a l sok ine t i c a l l y  stable.  

In the c a s e  of  an i so t rop ic  p r e s s u r e  we cannot  wr i t e  the equat ion of  s ta te  in the f o r m  P = P(p)  just  as  
in the  case  of  a cy l inder  with longitudinal  t e m p e r a t u r e .  

Le t  us make  use of the equat ions  for  the longitudinal  and p e r p e n d i c u l a r  componen t s  of  the p r e s s u r e  
t enso r  1~ and 1) 1 [21]. F r o m  the l i n e a r i z e d  Eu le r  equat ions ,  the cont inui ty  and g rav i t a t iona l  equat ions ,  and 
the  equat ions  for  1~11 and P•  we obtain  the following equat ion for  the pe r t u rba t i on  of  the potent ia l  � 9  

r  qb( ,  ~ ) 
- 7 - - -  ~ - -k '~  = 0 ,  r ~ R  (5.1) 

q)' / l~ , 

v = k~ (4~ - -  z~) (x 2 - -  k2c ~ + O)o') 
( x~ - -  ~c~) ( . ' ~  - -  x~) - -  coo ~ ( x~ - -  %k;c~) 

ca = 3p0 = 3 ~TII (1) ~ exp (/T + k z  - -  oJt) p, m ' 

The  solut ion of this  equat ion m u s t  be finite throughout ,  m u s t  vanish  at infinity, and both the solut ion 
and its f i r s t  de r iva t ive  m u s t  be cont inuous.  

Solut ions sa t i s fy ing  these  condi t ions  a r e  

q) = A J r  (qr) ,  r <  B ,  ~ = - - q 2 ' B K  z ( k r ) ,  r > R ,  (502) 

w h e r e  Jl  is the B e s s e l  funct ions  of  o r d e r  l ,  and K/ is the MacDonald  funct ion [22]. Since the solut ion of 
Eq. (5.2) and its f i r s t  de r iva t ive  m u s t  be cont inuous for  r = R, we have  

A J  z ( q R )  - -  B K z ( k R )  = 0 

The condi t ion for  a non t r iv ia l  solut ion y ie lds  the following d i spe r s ion  re la t ion :  

(5.3) 

qJ~-i (qR) k K l _  1 (kR) (5.4) 
]~ (qR) K~ (aR) 

w h e r e  q(k, w) is defined by Eqs .  (5.1) and (5.2). It  fol lows f r o m  Eq. (5.4) tha t  q has  a m i n i m u m  qmin  > 0, 
and qmin  R = 2.4 is the f i r s t  z e r o  of  J0(x). Le t  us now find w (k, q). F r o m  Eqs.  (5.1) and (5.2) we have  

x ~ = (~ _ l ~ ) ,  _ ~~ k ~ +  [(3~o~-k~c~), 2 q~ l '/~ (5 .5 )  2 -- L '~ 3 %3 (30)02 __ k2c 2) k ~ + q~ J 

f r o m  which it fol lows that  

~~ (5.6) x 2 > 0  for c 2 > k ~ + % q ~  

When c 2 > 3/2w02/qmin 2 the cy l inde r  is s table  f o r  all  k and l .  Using the e x p r e s s i o n  for  c 2 and qmin,  
we find that  a cy l inde r  bounded in the rad ia l  d i r ec t ion  is s table  aga ins t  any pe r tu rba t ions ,  p rov ided  

TIJ ~ 0.087c002R 2 
52 

6. Conclus ion.  The ma in  r e s u l t s  of this pape r  a r e  (1) the conc lus ion  that  a ro t a t ing  cy l inder  is s table  
aga ins t  a r b i t r a r y  p e r t u r b a t i o n s  in the plane p e r p e n d i c u l a r  to the axis  of  ro ta t ion ,  and (2) the d e m o n s t r a t i o n  
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of the kinetic two-s t r eam instabil i ty of a rotating cylinder in a hot gas, which has a maximum growth ra te  
for  l = 2, where  Wo*'2 >> ~02. 

This instabili ty can be associa ted with the p resence  of two spiral  a rms  in most  galaxies [23]. These 
a rm s  may be a consequence of the instabili ty produced during the rota t ion of the gas, which can be d iscussed  
hydrodynamical ly  against a background of col l is ionless  s ta rs .  The formation of the a rms  was discussed in 
[24] as a consequence of gravitat ional  instability~ The effect  of kinetic instabili ty on the format ion of spiral  
a rms  in a disk was d iscussed in [25]. 

The inf ini te-cyl inder  model d iscussed he re  is unrelated to a galaxy in the form of a highly oblate 
ellipsoid. However,  it is quite possible that the p re sence  of the maximum growth ra te  for I = 2 in the case  
of the two-s t r eam instabili ty will also be confi rmed for more  complicated configurations,  as compared  with 
the infinite cylinder.  
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